Semilocal Convergence Theorem for the Inverse-Free Jarratt Method under New Hölder Conditions
نویسندگان
چکیده
Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt method and present an error estimate. Finally, three examples are provided to show the application of the theorem.
منابع مشابه
Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equa...
متن کاملOn a Secant-like Method for Solving Generalized Equations
In the paper by Hilout and Piétrus (2006) a semilocal convergence analysis was given for the secant-like method to solve generalized equations using Hölder-type conditions introduced by the first author (for nonlinear equations). Here, we show that this convergence analysis can be refined under weaker hypothesis, and less computational cost. Moreover finer error estimates on the distances invol...
متن کاملExtended And Unified Local Convergence For Newton-Kantorovich Method Under w− Conditions With Applications
The goal of this paper is to present a local convergence analysis of Newton’s method for approximating a locally unique solution of an equation in a Banach space setting. Using the gauge function theory and our new idea of restricted convergence regions we present an extended and unified convergence theory. Key–Words: Newton’s method, Banach space, semilocal convergence, gauge function, converg...
متن کاملOn a family of Weierstrass-type root-finding methods with high order of convergence
in English: In 1985, Kyurkchiev and Andreev [1] constructed a sequence of iterative methods for finding all zeros of a polynomial simultaneously. In the literature there are only local convergence results for these methods (see [1, 5]). In this talk, we present a semilocal convergence theorem for Kyurkchiev-Andreev’s methods under computationally verifiable initial conditions and with an a post...
متن کاملA New Semilocal Convergence Theorem for the Weierstrass Method from Data at One Point
In this paper we present a new semilocal convergence theorem from data at one point for the Weierstrass iterative method for the simultaneous computation of polynomial zeros. The main result generalizes and improves all previous ones in this area.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015